SMRs: EXCERPT: SMRs to the rescue? Maybe not. . . .

SMRs: EXCERPT: SMRs to the rescue? Maybe not. . . .

Postby Oscar » Mon Jul 23, 2018 8:55 am

"Scientists assessed the options for growing nuclear power. They are grim."

[ ... renewables ]

By David , Vox Media, Jul 11, 2018


Small modular reactors to the rescue? Maybe not

The other great hope of the industry is factory-built small modular reactors (SMRs), which are — or will be, it is hoped — faster and cheaper to build than giant plants because they are smaller and built from standardized parts. They can be deployed incrementally, matched to energy demand in particular times and places, and are meltdown-proof without human intervention.

Several companies, most notably NuScale (which has already submitted its design to the feds), are trying to develop light-water SMRs. NuScale wants to build a test reactor on the grounds of the Idaho National Laboratories and more than a dozen companies have inquired about doing the same.

So, with already-proven technology and lower construction costs, are SMRs the key to saving nuclear in the US?

Using “a combination of engineering economic analysis and the use of structured procedures to elicit expert judgments,” the researchers took a close look at SMRs. Indeed, they “expended much effort in developing plausible scenarios of how an SMR domestic market might develop.”

The results? Grim. Under every plausible scenario, power from SMRs is (and remains, even with subsequent generations of the tech) substantially more expensive than power from competitors. So they probably can’t compete directly in power markets.

(An SMRsplainer from DOE. |DOE )

The researchers also examine four indirect ways that SMRs could build a market:

Industrial process heat: One alternative is to use SMRs to generate heat rather than power, for use in industrial applications that require high temperatures. The researchers find a substantial market exists for such heat, but when the costs of SMRs are compared to the cost of alternative heat sources (like natural gas), “the number of potential customers falls precipitously.”

Also, private companies (unlike utilities) can’t pass costs on to customers, so they’re less likely to take a chance constructing unfamiliar tech that still faces unresolved siting and regulatory issues. “When it comes time to sign contracts and pour concrete,” they conclude, “it is highly unlikely that any industrial customer would opt for a light water SMR.”

Power + desalination: Another frequently discussed alternative is to use SMRs as a kind of hybrid. The thing about nuclear plants is that they need to run more-or-less constantly; it’s expensive and inefficient to turn them on and off. But on-and-off power is what’s needed to flexibly complement variable renewable energy.

So the idea is to run SMRs constantly; when power is needed, they would provide power, and when it’s not, they would desalinate water. But after a close examination of the water situation in the US, the researchers found that there are only a few niche markets where desalination might be needed in the next few decades. And where they exist, desalinating with natural gas is much, much cheaper. This is likely another dead end, at least in the relevant time frame.

Military bases: Another thought is that SMRs might be used to power military bases — that the US military might serve as a kind first customer, helping SMRs scale up. The authors deem this “both unwise and unlikely to succeed.”

It is unlikely to succeed because the unique design requirements for the military are likely to yield an SMR too expensive for commercial viability. It is unwise because using the military as a tool to revive a particular industry is a Pandora’s box of political and ethical issues.

Plus, as they note, defaulting to the military to save nuclear is tantamount to admitting commercial defeat — not something likely to inspire market confidence.

SMRs for export: The final idea tossed around to jumpstart SMRs is building them for export. The idea is that other countries will have political and energy systems more amenable to nuclear. And the authors’ analysis supports the notion that there’s a global market for “many hundreds of light water SMRs.”

But there are substantial barriers. For one thing, many of the potential customers face “economic, political, and institutional realities” that render them unprepared to handle nuclear power at scale, and likely unwilling to accept close oversight by the US.

Aside from that, most decarbonization in the world will need to come from a select few big countries, and most of those countries are already nuclear-capable and unlikely to import hundreds of power plants from a geopolitical rival. “We remain skeptical that a US industry of factory-manufactured SMRs could be built primarily on the basis of exports,” they conclude.

In short, there don’t seem to be any viable markets to scale SMRs up. Consequently, “several hundred billion dollars of direct and indirect subsidies would be needed to support their development and deployment over the next several decades.”

On top of that, the US Nuclear Regulatory Commission would need to radically update and revise its regulatory review process. On top of that, the US would need to commit to total decarbonization, clearly and unequivocally enough to give markets confidence that carbon prices will reach and exceed $100/ton. And this would all have to happen soon, in the next few years.

“All these developments are possible,” they note, “but we believe they are most unlikely.”

There’s probably not going to be a nuclear wedge

So let’s review. Current, giant LMR reactors aren’t going to get built in the US — they have proven economic and political suicide. Even keeping current plants open will require extraordinary interventions. Advanced fission is unlikely to commercialize in the next few decades. And SMRs currently face grim market prospects. They are unlikely to mature and scale up without hundreds of billions in subsidies, substantial reform at NE and NRC, and a high, secure national carbon price.

It’s not impossible to imagine a high carbon price in coming decades, or natural gas prices rising, and SMRs finding success in niche markets. And it’s certainly possible to imagine failing to fully decarbonize by mid-century and needing nuclear to finish the job. The researchers are blunt about what would be needed for nuclear to be ready by then.

To assure that we have safe and affordable advanced reactor designs that can be deployed at scale by midcentury, the United States will need to dramatically increase and refocus the budget of the DOE’s NE toward advanced reactor development. Perceptive and ruthlessly pragmatic program officers will need to be recruited: ones with a sense of the mission’s urgency. The government would have to sustain that higher level of support in the face of constant short-term political pressures and, undoubtedly, organized opposition from advocates of other generating sources. Part of that increased budget would have to be dedicated to building new infrastructure, such as fast-flux test facilities and other system test beds. Even with a higher budget, surge funding may be needed in some years to support demonstration reactor development and program leadership would eventually have to focus on moving two or three systematically chosen designs to the point of commercialization.

“Perhaps these things can happen; the United States is no stranger to ambitious undertakings,” they conclude, “but it will take both vision and a level of commitment that are sorely lacking today.”

Nuclear proponents might reasonably respond that, yes, nuclear cannot contribute to decarbonization without substantial policy help. But decarbonization by mid-century will be impossible without substantial policy, period. No combination of technologies can scale up fast enough without help.

But renewable energy technologies seem to be on a trajectory toward subsidy independence (though plenty of policy and regulatory barriers to advanced energy tech remain). They are falling in cost at ridiculous rates — not just wind and solar, but storage, EVs, and other grid-edge technologies as well. Policy can accelerate their progress, or impede it, but at this point it cannot stop them. They have a momentum of their own, purely on economics.

Nuclear is in a different situation. Its current trajectory is decline; it needs lots and lots of new policy and public money to reverse that trajectory. That is a much more difficult political lift. And like the authors of the PNAS paper, I don’t have much faith that it will get done. For better or worse, renewable energy is the name of the game for the next few decades.
Site Admin
Posts: 8488
Joined: Wed May 03, 2006 3:23 pm

Return to Uranium/Nuclear/Waste

Who is online

Users browsing this forum: No registered users and 6 guests