Page 1 of 1

EDWARDS: Nuclear Reactor Decommissioning Issue

PostPosted: Mon Mar 11, 2019 5:14 pm
by Oscar
Research Background on Nuclear Reactor Decommissioning Issues in Manitoba

Gordon Edwards <>: Mar 04 02:39PM -0500

Friends: This document was written in response to questions from First Nations people in Manitoba.
[ ]

It deals with the proposed “quick and dirty” decommissioning of a research reactor by “entombment”. Nevertheless, there is much of importance to the entire spectrum of radioactive waste issues. I hope it proves to be of value to others as well.

Gordon Edwards, President
Canadian Coalition for Nuclear Responsibility

= = =

To Dr. Gordon Edwards

Please answer these questions BELOW with relevant research. Thanks.

1. Please share any expertise you might have in terms of safe disposal options for nuclear reactors — specifically, one located near Whiteshell on the Winnipeg River. They [Canadian nuclear authorities] said they would like to encase it in concrete, which apparently gives 300 years of safe storage.

2. Are there any other known physical options for safe disposal of nuclear waste? The concrete method just seems so simplistic. is this just an easy way out, or if science actually has something better than this?

Any assistance or insight would be appreciated.
Dr. Edwards’ reply:

Thank you for your email regarding radioactive waste issues at the closed-down Whiteshell Nuclear Research Establishment near Pinawa, Manitoba, on the Winnipeg River. That site is currently undergoing extensive decommissioning activities involving a wide variety of radioactive waste materials.

See ... fault.aspx

Questions regarding radioactive waste in Manitoba

In particular, the questions you have sent me from a First Nations source seem to be focussed on industry plans for the “in-situ decommissioning” of an old shut-down nuclear research reactor (called the WR-1 reactor) located at that federally-owned site, near the edge of Whiteshell Provincial Park.

By the “Atomic Energy Board” I presume the questioner is referring to the Canadian Nuclear Safety Commission (CNSC), which is Canada’s current nuclear regulatory agency. (The predecessor of the CNSC was the Atomic Energy Control Board, or AECB.)

See ... ctor-1.cfm

I have written two submissions on this topic for the Canadian Coalition for Nuclear Responsibility (CCNR). They were submitted to the CNSC in 2017 and 2018. These submissions are highly critical of current industry plans to “entomb” the WR-1 reactor entrails in concrete, and leave that concrete radioactive mausoleum near the shore of the Winnipeg River as a permanent radioactive waste dump – despite the fact that this site was never chosen to serve such a purpose, and despite the long-held view in the nuclear field that radioactive waste should never be left (abandoned) near circulating water.

<> .

The proponent of the concrete entombment of the Whiteshell reactor is Canadian Nuclear Laboratories (CNL), owned and run by a private consortium of multinational for-profit corporations. In their licence application to the CNSC they say that the concrete will safely contain the radioactivity for 300 years, despite the fact that most concrete structures have an expected lifetime of 50 years or less. In its own report, CNL gives a partial list (Table 7.2.1-1) of some of the many human-made radioactive materials that are in question. They do not mention the half-lives of these materials. The half-life of a radioactive substance is the time it takes for half of the material to disintegrate.

Of the 22 radionuclides indicated in Table 7.2.1-1, eleven of them have half-lives of over 100 years, nine of them have half-lives over 1,500 years, seven of them half half-lives over 15,000 years, four of them half half-lives over 100,000 years, and one of them has a half-life over 15 million years. In my own report for CCNS, I separated the half-lives into two columns — less than 100 years, and more than 100 years.

Anishinabek Nation and Iroquois Caucus Working Group

In Ontario, the heartland of Canada’s nuclear industry, the Anishinabek Nations’ Union of Ontario Indians (comprising 40 First Nations located throughout Ontario) joined forces in 2017 with the Iroquois Caucus to form a Radioactive Waste Working Group, which meets from time to time to assess radioactive waste matters in the province from a First Nations perspective and to coordinate activities. Chiefs involved in this Group issued a Joint Declaration on the transport and abandonment of radioactive wastes that encompasses five important principles for the responsible long-term management of radioactive waste of all kinds. The Assembly of First Nations passed a resolution along the same lines later that same year in Winnipeg.

<> and

The 5 principles from the Joint Declaration of the Anishinabek Nation & Iroquois Caucus are:

1. No Abandonment: Radioactive waste materials are damaging to living things. Many of these materials remain dangerous for tens of thousands of years or even longer. They must be kept out of the food we eat, the water we drink, the air we breathe, and the land we live on for many generations to come. The forces of Mother Earth are powerful and unpredictable and no human-made structures can be counted on to resist those forces forever. Such dangerous materials cannot be abandoned and forgotten.

2. Monitored and Retrievable Storage: Continuous guardianship of nuclear waste material is needed. This means long-term monitoring and retrievable storage. Information and resources must be passed on from one generation to the next so that our grandchildren’s grandchildren will be able to detect any signs of leakage of radioactive waste materials and protect themselves. They need to know how to fix such leaks as soon as they happen.

3. Better Containment, More Packaging: Cost and profit must never be the basis for long-term radioactive waste management. Paying a higher price for better containment today will help prevent much greater costs in the future when containment fails. Such failure will include irreparable environmental damage and radiation-induced diseases. The right kinds of packaging should be designed to make it easier to monitor, retrieve, and repackage insecure portions of the waste inventory as needed, for centuries to come.

4. Away from Major Water Bodies: Rivers and lakes are the blood and the lungs of Mother Earth. When we contaminate our waterways, we are poisoning life itself. That is why radioactive waste must not be stored beside major water bodies for the long-term. Yet this is exactly what is being planned at five locations in Canada: Kincardine on Lake Huron, Port Hope near Lake Ontario, Pinawa beside the Winnipeg River, and Chalk River and Rolphton beside the Ottawa River.

5. No Imports or Exports: The import and export of nuclear wastes over public roads and bridges should be forbidden except in truly exceptional cases after full consultation with all whose lands and waters are being put at risk. In particular, the planned shipment of highly radioactive liquid from Chalk River to South Carolina should not be allowed because it can be down-blended and solidified on site at Chalk River. Transport of nuclear waste should be strictly limited and decided on a case-by-case basis with full consultation with all those affected.

Last year a delegation of 5 chiefs from the affected First Nations in Ontario, accompanied by three others, went to the United Nations in New York City to communicate their positions on the subject of radioactive wastes. A video of this event, held on the occasion of the 17th Session of the UN Permanent Forum on indigenous issues, is posted on the web site of the United Nations and will be there for at least 3 years.
See ... 372426001/

Nature of the radioactive waste problem and alternative approaches

Ever since the dawn of the nuclear age in Canada, the federal government and the Canadian nuclear industry have promised that all dangerous radioactive byproducts created by the industry would be safely stored and kept out of the environment for countless thousands of years – a period of time that dwarfs the span of recorded human history.

Many people, scientists and non-scientists alike, regard the long term management of radioactive waste as one of the major unsolved problems of the human race. Many ideas have been proposed, but all have proven to have serious pitfalls or drawbacks. Dumping in the oceans, now forbidden by international law. Burial in the antarctic ice fields, likewise forbidden. Shooting it into outer space, regarded as far too dangerous due to rocket failures and explosions.

High-Level Radioactive Waste – Geological Disposal

For example, the long-term management of irradiated nuclear fuel, called “high-level nuclear waste”, is still an open question as there is as yet no licensed and operating repository to store such waste anywhere in the world. The nuclear industry has long advocating burying this waste is a “deep geological repository”, and eventually abandoning it there But there have been eight attempt in the USA to situate such a repository, and all eight attempts have failed.

In 1978, the Ontario Royal Commission on Electric Power Planning published a report (A Race Against Time) that recommended a ban on new nuclear reactors unless such a high-level waste repository solution is found by 1985. That same year, Quebec banned any new reactors in the province. At the same time, the governments of Canada and Ontario launched a $700 million research project that lasted 15 years to demonstrate the concept of deep geological disposal of high-level waste. The Underground Research Laboratory was built near Lac du Bonnet in Manitoba (not far from Pinawa) to “validate” the concept of geological disposal, but no radioactive materials were allowed to be emplaced in that experimental repository, and Manitoba subsequently passed a law forbidding the import of high-level radioactive wastes into the province for the purpose of permanent disposal.

Following a ten-year environmental assessment process with public hearings in five provinces conducted by an independent panel, the government of Canada told the waste-producing utilities in Ontario, Quebec and New Brunswick, to establish an industry-owned agency, the Nuclear Waste Management Agency (NWMO), to find a “willing host community” somewhere in Canada that would be prepared to accept all of Canada’s high-level nuclear waste for eventual deep geological disposal.

That search is still ongoing, with only five out of the eleven original candidate communities still in the running. Each of the remaining five communities, all in Ontario, typically with a population less than 1000, receive $300,000 per year just for participating. The estimated cost of the ultimate disposal of irradiated nuclear fuel underground in Canada is estimated to be about $26 billion dollars. Many believe the true cost is likely to be double or triple that amount, and some (including myself) are skeptical that the plan will succeed, given the failures that have already occurred elsewhere.

Low-Level and Intermediate-Level Radioactive Wastes

Even after the intensely radioactive high-level waste (the irradiated nuclear fuel) has been removed from the reactor, the entire core area of the facility (where the fuel was housed) and the primary cooling system (the pipes, pumps, condensers, and other equipment used to circulate the coolant through the core to prevent the fuel from overheating and “melting down” at a very high temperature) has also become radioactive waste.

Moreover there are gloves, mops, filters, fuelling machines, cranes and other materials which have become so radioactively contaminated that they too must be stored as radioactive waste and must not be recycled for commercial use for fear of introducing radioactive wastes into the marketplace. All such wastes are called “low-level and intermediate-level wastes” in order to distinguish them from the much more intensely radioactive irradiated fuel.

In Ontario there are 22 electricity-producing nuclear reactors (18 of which are still operating). Ontario Power Generation is hoping to get approval from the government of Canada to put all of the low-level and intermediate-level radioactive waste from all of its 22 reactors into a deep underground storage facility less than a mile from Lake Huron. Inspired by the idea of a geologic repository for high-level waste, this underground repository (700 metres deep) is intended to host a bewildering variety of radioactive wastes in many different kinds of physical and chemical forms. When filled the repository would be sealed and abandoned, following a lengthy period of consolidation and monitoring.

This proposal has elicited a storm of protest and the final decision has been delayed for years. Over 100 Great Lakes Mayors and top elected officials have joined forces in calling on the Canadian government to reject OPG's proposed nuclear waste repository. The Saugeen Ojibway First Nation has not yet given its approval and OPG has promised that it will not proceed against the wishes of that First Nation. Environment Minister Catherine McKenna has withheld any federal government decision, pro or con, for the OPG project, until the Saugeen FN declares itself on this matter.

Much of the motivation for such protests has to do with dramatic failures of underground repositories for low-level and intermediate-level wastes in the USA and Germany that have occurred in recent years. The German government has formally admitted that the emplacement of similar radioactive wastes in the deep underground Asse-2 facility, an abandoned salt mine, has been an unmitigated disaster. They have now ordered the radioactive waste to be removed from the facility and brought back to the surface, an onerous task that is expected to take at least 30 years and cost at least two billion dollars. It has emerged that radioactive materials were leaking from the Asse-2 facility for over ten years before the industry alerted officials to the problem, presumably because to admit the waste was leaking would be bad public relations and would constitute a major embarrassment to Germany’s nuclear industry.

Another deep underground repository for low- and intermediate-level wastes at Morsleben, in Germany, also appears to be failing, as the entire repository seems to be sagging and collapsing. So far the government has not decided what to do in the case of Morsleben, but Germany admits it seems to be another case of very questionable practices when it comes to the long-term confinement of radioactive waste.

The only deep geological repository for radioactive wastes in North America is located near Carlsbad New Mexico . . . . .